Is there a difference between equilibrium and steady state?
$begingroup$
The term equilibrium is used in the context of reversible reactions that reach a point where concentrations no longer change. The term steady-state is used in enzyme kinetics when the concentration of the enzyme-substrate complex no longer changes (or hardly changes, in case of a quasi steady state). It is also used to describe multi-step biochemical pathways. Is there a difference between the two, given that both concern a situation where concentrations don't change over time?
equilibrium kinetics
$endgroup$
add a comment |
$begingroup$
The term equilibrium is used in the context of reversible reactions that reach a point where concentrations no longer change. The term steady-state is used in enzyme kinetics when the concentration of the enzyme-substrate complex no longer changes (or hardly changes, in case of a quasi steady state). It is also used to describe multi-step biochemical pathways. Is there a difference between the two, given that both concern a situation where concentrations don't change over time?
equilibrium kinetics
$endgroup$
add a comment |
$begingroup$
The term equilibrium is used in the context of reversible reactions that reach a point where concentrations no longer change. The term steady-state is used in enzyme kinetics when the concentration of the enzyme-substrate complex no longer changes (or hardly changes, in case of a quasi steady state). It is also used to describe multi-step biochemical pathways. Is there a difference between the two, given that both concern a situation where concentrations don't change over time?
equilibrium kinetics
$endgroup$
The term equilibrium is used in the context of reversible reactions that reach a point where concentrations no longer change. The term steady-state is used in enzyme kinetics when the concentration of the enzyme-substrate complex no longer changes (or hardly changes, in case of a quasi steady state). It is also used to describe multi-step biochemical pathways. Is there a difference between the two, given that both concern a situation where concentrations don't change over time?
equilibrium kinetics
equilibrium kinetics
asked 1 hour ago
Karsten TheisKarsten Theis
2,379327
2,379327
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, equilibrium and steady-state are distinct concepts.
A reaction is at equilibrium if reactants and products are both present, the forward and reverse rates are equal and the concentrations don't change over time. If this is the only reaction in a closed, isolated system, the entropy in the system is constant.
Steady-state implies a system that is not at equilibrium (entropy increases). A species is said to be at steady state when the rate of reactions (or more general, processes) that form the species is equal to the rate of reactions (or processes) that remove the species.
In both cases, there are rates ($mathrm{rate}_1$ and $mathrm{rate}_2$) that are equal. For an equilibrium, the forward and reverse rate of the same reaction are equal to each other. For a steady state, the rates of processes leading to increase of the concentration of a species are equal to the rates of processes leading to decrease of the concentration of the same species.
$$ce{A <=>[rate_1][rate_2] B} vs ce{source->[rate_1]C->[rate_2]sink} $$
For an equilibrium, all concentrations are constant over time. For a steady-state, there is a net reaction, so some amounts change (the amount of source and sink), while at least one species - the one at steady state - has a constant concentration as long as the conditions of steady state prevail.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "431"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f110794%2fis-there-a-difference-between-equilibrium-and-steady-state%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, equilibrium and steady-state are distinct concepts.
A reaction is at equilibrium if reactants and products are both present, the forward and reverse rates are equal and the concentrations don't change over time. If this is the only reaction in a closed, isolated system, the entropy in the system is constant.
Steady-state implies a system that is not at equilibrium (entropy increases). A species is said to be at steady state when the rate of reactions (or more general, processes) that form the species is equal to the rate of reactions (or processes) that remove the species.
In both cases, there are rates ($mathrm{rate}_1$ and $mathrm{rate}_2$) that are equal. For an equilibrium, the forward and reverse rate of the same reaction are equal to each other. For a steady state, the rates of processes leading to increase of the concentration of a species are equal to the rates of processes leading to decrease of the concentration of the same species.
$$ce{A <=>[rate_1][rate_2] B} vs ce{source->[rate_1]C->[rate_2]sink} $$
For an equilibrium, all concentrations are constant over time. For a steady-state, there is a net reaction, so some amounts change (the amount of source and sink), while at least one species - the one at steady state - has a constant concentration as long as the conditions of steady state prevail.
$endgroup$
add a comment |
$begingroup$
Yes, equilibrium and steady-state are distinct concepts.
A reaction is at equilibrium if reactants and products are both present, the forward and reverse rates are equal and the concentrations don't change over time. If this is the only reaction in a closed, isolated system, the entropy in the system is constant.
Steady-state implies a system that is not at equilibrium (entropy increases). A species is said to be at steady state when the rate of reactions (or more general, processes) that form the species is equal to the rate of reactions (or processes) that remove the species.
In both cases, there are rates ($mathrm{rate}_1$ and $mathrm{rate}_2$) that are equal. For an equilibrium, the forward and reverse rate of the same reaction are equal to each other. For a steady state, the rates of processes leading to increase of the concentration of a species are equal to the rates of processes leading to decrease of the concentration of the same species.
$$ce{A <=>[rate_1][rate_2] B} vs ce{source->[rate_1]C->[rate_2]sink} $$
For an equilibrium, all concentrations are constant over time. For a steady-state, there is a net reaction, so some amounts change (the amount of source and sink), while at least one species - the one at steady state - has a constant concentration as long as the conditions of steady state prevail.
$endgroup$
add a comment |
$begingroup$
Yes, equilibrium and steady-state are distinct concepts.
A reaction is at equilibrium if reactants and products are both present, the forward and reverse rates are equal and the concentrations don't change over time. If this is the only reaction in a closed, isolated system, the entropy in the system is constant.
Steady-state implies a system that is not at equilibrium (entropy increases). A species is said to be at steady state when the rate of reactions (or more general, processes) that form the species is equal to the rate of reactions (or processes) that remove the species.
In both cases, there are rates ($mathrm{rate}_1$ and $mathrm{rate}_2$) that are equal. For an equilibrium, the forward and reverse rate of the same reaction are equal to each other. For a steady state, the rates of processes leading to increase of the concentration of a species are equal to the rates of processes leading to decrease of the concentration of the same species.
$$ce{A <=>[rate_1][rate_2] B} vs ce{source->[rate_1]C->[rate_2]sink} $$
For an equilibrium, all concentrations are constant over time. For a steady-state, there is a net reaction, so some amounts change (the amount of source and sink), while at least one species - the one at steady state - has a constant concentration as long as the conditions of steady state prevail.
$endgroup$
Yes, equilibrium and steady-state are distinct concepts.
A reaction is at equilibrium if reactants and products are both present, the forward and reverse rates are equal and the concentrations don't change over time. If this is the only reaction in a closed, isolated system, the entropy in the system is constant.
Steady-state implies a system that is not at equilibrium (entropy increases). A species is said to be at steady state when the rate of reactions (or more general, processes) that form the species is equal to the rate of reactions (or processes) that remove the species.
In both cases, there are rates ($mathrm{rate}_1$ and $mathrm{rate}_2$) that are equal. For an equilibrium, the forward and reverse rate of the same reaction are equal to each other. For a steady state, the rates of processes leading to increase of the concentration of a species are equal to the rates of processes leading to decrease of the concentration of the same species.
$$ce{A <=>[rate_1][rate_2] B} vs ce{source->[rate_1]C->[rate_2]sink} $$
For an equilibrium, all concentrations are constant over time. For a steady-state, there is a net reaction, so some amounts change (the amount of source and sink), while at least one species - the one at steady state - has a constant concentration as long as the conditions of steady state prevail.
edited 1 hour ago
answered 1 hour ago
Karsten TheisKarsten Theis
2,379327
2,379327
add a comment |
add a comment |
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f110794%2fis-there-a-difference-between-equilibrium-and-steady-state%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown