Plot of a tornado shape like surface
$begingroup$
Which will be a simple code to plot a shape of a surface tornado like cone?
Any help is welcome.
plotting
New contributor
$endgroup$
add a comment |
$begingroup$
Which will be a simple code to plot a shape of a surface tornado like cone?
Any help is welcome.
plotting
New contributor
$endgroup$
add a comment |
$begingroup$
Which will be a simple code to plot a shape of a surface tornado like cone?
Any help is welcome.
plotting
New contributor
$endgroup$
Which will be a simple code to plot a shape of a surface tornado like cone?
Any help is welcome.
plotting
plotting
New contributor
New contributor
New contributor
asked 3 hours ago
janmarqzjanmarqz
1113
1113
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
My quick go at it:
ContourPlot3D[
(x - z/5 Cos[[Pi] z])^2 + (y - z/5 Sin[[Pi] z])^2 == (z/4)^2
, {x, -1, 1}, {y, -1, 1}, {z, 0, 2}
, Mesh -> None, Axes -> False, Boxed -> False
, PlotTheme -> "ThickSurface", ContourStyle -> RGBColor[0.41, 0.5, 0.63]
]
$endgroup$
add a comment |
$begingroup$
I like "surface synthesis" questions. Here's a simple-minded model that combines an Archimedean spiral with a power law curve:
With[{h = 1/10, n = 24, c = 4, p = 2/3},
ParametricPlot3D[{t (h Cos[n t] + Cos[v]), t (h Sin[n t] + Sin[v]), (c t)^p},
{t, 0, 3}, {v, 0, 2 π}, Axes -> None, Boxed -> False,
Lighting -> "Neutral", Mesh -> False, PlotPoints -> 85,
PlotStyle -> Opacity[3/4, Black], ViewPoint -> {3.2, -1.6, 1.}]]
Adjust parameters as seen fit.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
janmarqz is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193743%2fplot-of-a-tornado-shape-like-surface%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
My quick go at it:
ContourPlot3D[
(x - z/5 Cos[[Pi] z])^2 + (y - z/5 Sin[[Pi] z])^2 == (z/4)^2
, {x, -1, 1}, {y, -1, 1}, {z, 0, 2}
, Mesh -> None, Axes -> False, Boxed -> False
, PlotTheme -> "ThickSurface", ContourStyle -> RGBColor[0.41, 0.5, 0.63]
]
$endgroup$
add a comment |
$begingroup$
My quick go at it:
ContourPlot3D[
(x - z/5 Cos[[Pi] z])^2 + (y - z/5 Sin[[Pi] z])^2 == (z/4)^2
, {x, -1, 1}, {y, -1, 1}, {z, 0, 2}
, Mesh -> None, Axes -> False, Boxed -> False
, PlotTheme -> "ThickSurface", ContourStyle -> RGBColor[0.41, 0.5, 0.63]
]
$endgroup$
add a comment |
$begingroup$
My quick go at it:
ContourPlot3D[
(x - z/5 Cos[[Pi] z])^2 + (y - z/5 Sin[[Pi] z])^2 == (z/4)^2
, {x, -1, 1}, {y, -1, 1}, {z, 0, 2}
, Mesh -> None, Axes -> False, Boxed -> False
, PlotTheme -> "ThickSurface", ContourStyle -> RGBColor[0.41, 0.5, 0.63]
]
$endgroup$
My quick go at it:
ContourPlot3D[
(x - z/5 Cos[[Pi] z])^2 + (y - z/5 Sin[[Pi] z])^2 == (z/4)^2
, {x, -1, 1}, {y, -1, 1}, {z, 0, 2}
, Mesh -> None, Axes -> False, Boxed -> False
, PlotTheme -> "ThickSurface", ContourStyle -> RGBColor[0.41, 0.5, 0.63]
]
answered 2 hours ago
Thies HeideckeThies Heidecke
7,0712638
7,0712638
add a comment |
add a comment |
$begingroup$
I like "surface synthesis" questions. Here's a simple-minded model that combines an Archimedean spiral with a power law curve:
With[{h = 1/10, n = 24, c = 4, p = 2/3},
ParametricPlot3D[{t (h Cos[n t] + Cos[v]), t (h Sin[n t] + Sin[v]), (c t)^p},
{t, 0, 3}, {v, 0, 2 π}, Axes -> None, Boxed -> False,
Lighting -> "Neutral", Mesh -> False, PlotPoints -> 85,
PlotStyle -> Opacity[3/4, Black], ViewPoint -> {3.2, -1.6, 1.}]]
Adjust parameters as seen fit.
$endgroup$
add a comment |
$begingroup$
I like "surface synthesis" questions. Here's a simple-minded model that combines an Archimedean spiral with a power law curve:
With[{h = 1/10, n = 24, c = 4, p = 2/3},
ParametricPlot3D[{t (h Cos[n t] + Cos[v]), t (h Sin[n t] + Sin[v]), (c t)^p},
{t, 0, 3}, {v, 0, 2 π}, Axes -> None, Boxed -> False,
Lighting -> "Neutral", Mesh -> False, PlotPoints -> 85,
PlotStyle -> Opacity[3/4, Black], ViewPoint -> {3.2, -1.6, 1.}]]
Adjust parameters as seen fit.
$endgroup$
add a comment |
$begingroup$
I like "surface synthesis" questions. Here's a simple-minded model that combines an Archimedean spiral with a power law curve:
With[{h = 1/10, n = 24, c = 4, p = 2/3},
ParametricPlot3D[{t (h Cos[n t] + Cos[v]), t (h Sin[n t] + Sin[v]), (c t)^p},
{t, 0, 3}, {v, 0, 2 π}, Axes -> None, Boxed -> False,
Lighting -> "Neutral", Mesh -> False, PlotPoints -> 85,
PlotStyle -> Opacity[3/4, Black], ViewPoint -> {3.2, -1.6, 1.}]]
Adjust parameters as seen fit.
$endgroup$
I like "surface synthesis" questions. Here's a simple-minded model that combines an Archimedean spiral with a power law curve:
With[{h = 1/10, n = 24, c = 4, p = 2/3},
ParametricPlot3D[{t (h Cos[n t] + Cos[v]), t (h Sin[n t] + Sin[v]), (c t)^p},
{t, 0, 3}, {v, 0, 2 π}, Axes -> None, Boxed -> False,
Lighting -> "Neutral", Mesh -> False, PlotPoints -> 85,
PlotStyle -> Opacity[3/4, Black], ViewPoint -> {3.2, -1.6, 1.}]]
Adjust parameters as seen fit.
answered 16 mins ago
J. M. is slightly pensive♦J. M. is slightly pensive
98.1k10306465
98.1k10306465
add a comment |
add a comment |
janmarqz is a new contributor. Be nice, and check out our Code of Conduct.
janmarqz is a new contributor. Be nice, and check out our Code of Conduct.
janmarqz is a new contributor. Be nice, and check out our Code of Conduct.
janmarqz is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193743%2fplot-of-a-tornado-shape-like-surface%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown