Is every diagonalizable matrix is an exponential
$begingroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
$endgroup$
add a comment |
$begingroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
$endgroup$
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
14 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
13 hours ago
add a comment |
$begingroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
$endgroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
linear-algebra lie-groups diagonalization matrix-exponential
edited 14 hours ago
José Carlos Santos
173k23133241
173k23133241
asked 14 hours ago
PerelManPerelMan
723413
723413
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
14 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
13 hours ago
add a comment |
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
14 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
13 hours ago
2
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
14 hours ago
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
14 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
13 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
13 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
add a comment |
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
add a comment |
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
edited 14 hours ago
answered 14 hours ago
José Carlos SantosJosé Carlos Santos
173k23133241
173k23133241
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
14 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
13 hours ago