Correctly defining the return of a procedure
$begingroup$
I am sort of new to mathematica and I am struggling with how to correctly set the return of a specific function which is a procedure.
I am give the following task:
Given the map $x_{n+1} = r x_n (1-x_n)$:
1- set $x_0 = 0.5$
2- write a function $f(r)$ which evaluates the first 1000 terms fo the sequence, takes the last 100 and then selects distinct elements.
This is what I came up with so far
x[0] = 0.5
f[r_]:={
l = Table[0,1000]; (*init table of 1000 elems*)
l[[1]] = x[0]; (*set x_0*)
For[n=1,n<1000,n++,
{
x[n] = r * x[n-1] *(1-x[n-1]); (*evaluate x_n*)
l[[n+1]] = x[n]; (*set nth elem of list*)
}
];
l= Union[Take[l, -100]] (*modify list*)
Return[l] (*return list*)
}
but this does not work at all. thanks tho everyone who is keen to partecipate and give some suggestion :)
list-manipulation
New contributor
$endgroup$
add a comment |
$begingroup$
I am sort of new to mathematica and I am struggling with how to correctly set the return of a specific function which is a procedure.
I am give the following task:
Given the map $x_{n+1} = r x_n (1-x_n)$:
1- set $x_0 = 0.5$
2- write a function $f(r)$ which evaluates the first 1000 terms fo the sequence, takes the last 100 and then selects distinct elements.
This is what I came up with so far
x[0] = 0.5
f[r_]:={
l = Table[0,1000]; (*init table of 1000 elems*)
l[[1]] = x[0]; (*set x_0*)
For[n=1,n<1000,n++,
{
x[n] = r * x[n-1] *(1-x[n-1]); (*evaluate x_n*)
l[[n+1]] = x[n]; (*set nth elem of list*)
}
];
l= Union[Take[l, -100]] (*modify list*)
Return[l] (*return list*)
}
but this does not work at all. thanks tho everyone who is keen to partecipate and give some suggestion :)
list-manipulation
New contributor
$endgroup$
1
$begingroup$
Curly braces are for lists, not for code blocks. UseModule
,Block
, orWith
for code blocks. And try not to useFor
.
$endgroup$
– Roman
yesterday
3
$begingroup$
Why should I avoid the For loop in Mathematica?
$endgroup$
– corey979
yesterday
1
$begingroup$
Return
doesn't do what you think it does. Don't use it until you understand it. Once you understand it, you'll probably never use it.
$endgroup$
– John Doty
yesterday
$begingroup$
You might also look intoNest
andNestList
as an alternative, built-in way to iterate this map.
$endgroup$
– Chris K
yesterday
add a comment |
$begingroup$
I am sort of new to mathematica and I am struggling with how to correctly set the return of a specific function which is a procedure.
I am give the following task:
Given the map $x_{n+1} = r x_n (1-x_n)$:
1- set $x_0 = 0.5$
2- write a function $f(r)$ which evaluates the first 1000 terms fo the sequence, takes the last 100 and then selects distinct elements.
This is what I came up with so far
x[0] = 0.5
f[r_]:={
l = Table[0,1000]; (*init table of 1000 elems*)
l[[1]] = x[0]; (*set x_0*)
For[n=1,n<1000,n++,
{
x[n] = r * x[n-1] *(1-x[n-1]); (*evaluate x_n*)
l[[n+1]] = x[n]; (*set nth elem of list*)
}
];
l= Union[Take[l, -100]] (*modify list*)
Return[l] (*return list*)
}
but this does not work at all. thanks tho everyone who is keen to partecipate and give some suggestion :)
list-manipulation
New contributor
$endgroup$
I am sort of new to mathematica and I am struggling with how to correctly set the return of a specific function which is a procedure.
I am give the following task:
Given the map $x_{n+1} = r x_n (1-x_n)$:
1- set $x_0 = 0.5$
2- write a function $f(r)$ which evaluates the first 1000 terms fo the sequence, takes the last 100 and then selects distinct elements.
This is what I came up with so far
x[0] = 0.5
f[r_]:={
l = Table[0,1000]; (*init table of 1000 elems*)
l[[1]] = x[0]; (*set x_0*)
For[n=1,n<1000,n++,
{
x[n] = r * x[n-1] *(1-x[n-1]); (*evaluate x_n*)
l[[n+1]] = x[n]; (*set nth elem of list*)
}
];
l= Union[Take[l, -100]] (*modify list*)
Return[l] (*return list*)
}
but this does not work at all. thanks tho everyone who is keen to partecipate and give some suggestion :)
list-manipulation
list-manipulation
New contributor
New contributor
New contributor
asked yesterday
JacquesLeenJacquesLeen
303
303
New contributor
New contributor
1
$begingroup$
Curly braces are for lists, not for code blocks. UseModule
,Block
, orWith
for code blocks. And try not to useFor
.
$endgroup$
– Roman
yesterday
3
$begingroup$
Why should I avoid the For loop in Mathematica?
$endgroup$
– corey979
yesterday
1
$begingroup$
Return
doesn't do what you think it does. Don't use it until you understand it. Once you understand it, you'll probably never use it.
$endgroup$
– John Doty
yesterday
$begingroup$
You might also look intoNest
andNestList
as an alternative, built-in way to iterate this map.
$endgroup$
– Chris K
yesterday
add a comment |
1
$begingroup$
Curly braces are for lists, not for code blocks. UseModule
,Block
, orWith
for code blocks. And try not to useFor
.
$endgroup$
– Roman
yesterday
3
$begingroup$
Why should I avoid the For loop in Mathematica?
$endgroup$
– corey979
yesterday
1
$begingroup$
Return
doesn't do what you think it does. Don't use it until you understand it. Once you understand it, you'll probably never use it.
$endgroup$
– John Doty
yesterday
$begingroup$
You might also look intoNest
andNestList
as an alternative, built-in way to iterate this map.
$endgroup$
– Chris K
yesterday
1
1
$begingroup$
Curly braces are for lists, not for code blocks. Use
Module
, Block
, or With
for code blocks. And try not to use For
.$endgroup$
– Roman
yesterday
$begingroup$
Curly braces are for lists, not for code blocks. Use
Module
, Block
, or With
for code blocks. And try not to use For
.$endgroup$
– Roman
yesterday
3
3
$begingroup$
Why should I avoid the For loop in Mathematica?
$endgroup$
– corey979
yesterday
$begingroup$
Why should I avoid the For loop in Mathematica?
$endgroup$
– corey979
yesterday
1
1
$begingroup$
Return
doesn't do what you think it does. Don't use it until you understand it. Once you understand it, you'll probably never use it.$endgroup$
– John Doty
yesterday
$begingroup$
Return
doesn't do what you think it does. Don't use it until you understand it. Once you understand it, you'll probably never use it.$endgroup$
– John Doty
yesterday
$begingroup$
You might also look into
Nest
and NestList
as an alternative, built-in way to iterate this map.$endgroup$
– Chris K
yesterday
$begingroup$
You might also look into
Nest
and NestList
as an alternative, built-in way to iterate this map.$endgroup$
– Chris K
yesterday
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Try this:
f[r_] := Union[
Take[
RecurrenceTable[
{a[n + 1] == r*(1 - a[n])*a[n], a[1] == .5},
a, {n, 1, 1000}
],
-100]
]
$endgroup$
2
$begingroup$
Or, a little more efficiently,f[r_] := Union[ RecurrenceTable[{a[n + 1] == r*(1 - a[n])*a[n], a[1] == 0.5}, a, {n, 901, 1000}]]
$endgroup$
– Bob Hanlon
yesterday
add a comment |
$begingroup$
For a specific value of $r$ you can do
With[{r = 3.7},
NestList[r*#*(1-#) &, 0.5, 1000][[-100 ;;]]]
{0.783499, 0.627626, 0.864733, 0.432788, 0.908285, 0.308222,
0.788918, 0.616148, 0.875086, 0.404449, 0.891219, 0.358706, 0.851134,
0.468809, 0.9214, 0.26796, 0.725783, 0.736382, 0.718257, 0.748746,
0.696065, 0.782767, 0.629159, 0.863277, 0.436711, 0.910179, 0.302485,
0.780655, 0.63356, 0.858998, 0.448145, 0.915051, 0.287611, 0.758096,
0.67853, 0.80707, 0.576119, 0.903562, 0.32241, 0.808309, 0.573299,
0.905121, 0.317745, 0.802098, 0.587326, 0.896784, 0.34248, 0.833193,
0.514234, 0.92425, 0.259043, 0.710177, 0.761555, 0.67188, 0.815692,
0.556253, 0.913292, 0.293003, 0.766463, 0.662291, 0.827548, 0.528036,
0.922092, 0.265802, 0.722061, 0.74255, 0.707328, 0.765957, 0.663288,
0.826347, 0.530942, 0.921458, 0.267782, 0.725477, 0.736893, 0.717362,
0.750189, 0.6934, 0.786607, 0.621069, 0.870766, 0.41637, 0.899122,
0.335595, 0.824992, 0.534206, 0.920671, 0.270233, 0.729667, 0.729837,
0.729548, 0.730039, 0.729203, 0.730623, 0.728207, 0.732309, 0.72532,
0.737154, 0.716905, 0.750923}
I don't think there are any duplicates in this list ($r$ is in the chaotic region). For other values of $r$ there are indeed duplicates:
With[{r = 3.5},
NestList[r*#*(1 - #) &, 0.5, 1000][[-100 ;;]]] // DeleteDuplicates // Sort
{0.38282, 0.500884, 0.826941, 0.874997}
// Union
does the same thing as // DeleteDuplicates // Sort
if you prefer.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194802%2fcorrectly-defining-the-return-of-a-procedure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try this:
f[r_] := Union[
Take[
RecurrenceTable[
{a[n + 1] == r*(1 - a[n])*a[n], a[1] == .5},
a, {n, 1, 1000}
],
-100]
]
$endgroup$
2
$begingroup$
Or, a little more efficiently,f[r_] := Union[ RecurrenceTable[{a[n + 1] == r*(1 - a[n])*a[n], a[1] == 0.5}, a, {n, 901, 1000}]]
$endgroup$
– Bob Hanlon
yesterday
add a comment |
$begingroup$
Try this:
f[r_] := Union[
Take[
RecurrenceTable[
{a[n + 1] == r*(1 - a[n])*a[n], a[1] == .5},
a, {n, 1, 1000}
],
-100]
]
$endgroup$
2
$begingroup$
Or, a little more efficiently,f[r_] := Union[ RecurrenceTable[{a[n + 1] == r*(1 - a[n])*a[n], a[1] == 0.5}, a, {n, 901, 1000}]]
$endgroup$
– Bob Hanlon
yesterday
add a comment |
$begingroup$
Try this:
f[r_] := Union[
Take[
RecurrenceTable[
{a[n + 1] == r*(1 - a[n])*a[n], a[1] == .5},
a, {n, 1, 1000}
],
-100]
]
$endgroup$
Try this:
f[r_] := Union[
Take[
RecurrenceTable[
{a[n + 1] == r*(1 - a[n])*a[n], a[1] == .5},
a, {n, 1, 1000}
],
-100]
]
edited yesterday
MarcoB
38.6k557115
38.6k557115
answered yesterday
Innerw0lfInnerw0lf
814
814
2
$begingroup$
Or, a little more efficiently,f[r_] := Union[ RecurrenceTable[{a[n + 1] == r*(1 - a[n])*a[n], a[1] == 0.5}, a, {n, 901, 1000}]]
$endgroup$
– Bob Hanlon
yesterday
add a comment |
2
$begingroup$
Or, a little more efficiently,f[r_] := Union[ RecurrenceTable[{a[n + 1] == r*(1 - a[n])*a[n], a[1] == 0.5}, a, {n, 901, 1000}]]
$endgroup$
– Bob Hanlon
yesterday
2
2
$begingroup$
Or, a little more efficiently,
f[r_] := Union[ RecurrenceTable[{a[n + 1] == r*(1 - a[n])*a[n], a[1] == 0.5}, a, {n, 901, 1000}]]
$endgroup$
– Bob Hanlon
yesterday
$begingroup$
Or, a little more efficiently,
f[r_] := Union[ RecurrenceTable[{a[n + 1] == r*(1 - a[n])*a[n], a[1] == 0.5}, a, {n, 901, 1000}]]
$endgroup$
– Bob Hanlon
yesterday
add a comment |
$begingroup$
For a specific value of $r$ you can do
With[{r = 3.7},
NestList[r*#*(1-#) &, 0.5, 1000][[-100 ;;]]]
{0.783499, 0.627626, 0.864733, 0.432788, 0.908285, 0.308222,
0.788918, 0.616148, 0.875086, 0.404449, 0.891219, 0.358706, 0.851134,
0.468809, 0.9214, 0.26796, 0.725783, 0.736382, 0.718257, 0.748746,
0.696065, 0.782767, 0.629159, 0.863277, 0.436711, 0.910179, 0.302485,
0.780655, 0.63356, 0.858998, 0.448145, 0.915051, 0.287611, 0.758096,
0.67853, 0.80707, 0.576119, 0.903562, 0.32241, 0.808309, 0.573299,
0.905121, 0.317745, 0.802098, 0.587326, 0.896784, 0.34248, 0.833193,
0.514234, 0.92425, 0.259043, 0.710177, 0.761555, 0.67188, 0.815692,
0.556253, 0.913292, 0.293003, 0.766463, 0.662291, 0.827548, 0.528036,
0.922092, 0.265802, 0.722061, 0.74255, 0.707328, 0.765957, 0.663288,
0.826347, 0.530942, 0.921458, 0.267782, 0.725477, 0.736893, 0.717362,
0.750189, 0.6934, 0.786607, 0.621069, 0.870766, 0.41637, 0.899122,
0.335595, 0.824992, 0.534206, 0.920671, 0.270233, 0.729667, 0.729837,
0.729548, 0.730039, 0.729203, 0.730623, 0.728207, 0.732309, 0.72532,
0.737154, 0.716905, 0.750923}
I don't think there are any duplicates in this list ($r$ is in the chaotic region). For other values of $r$ there are indeed duplicates:
With[{r = 3.5},
NestList[r*#*(1 - #) &, 0.5, 1000][[-100 ;;]]] // DeleteDuplicates // Sort
{0.38282, 0.500884, 0.826941, 0.874997}
// Union
does the same thing as // DeleteDuplicates // Sort
if you prefer.
$endgroup$
add a comment |
$begingroup$
For a specific value of $r$ you can do
With[{r = 3.7},
NestList[r*#*(1-#) &, 0.5, 1000][[-100 ;;]]]
{0.783499, 0.627626, 0.864733, 0.432788, 0.908285, 0.308222,
0.788918, 0.616148, 0.875086, 0.404449, 0.891219, 0.358706, 0.851134,
0.468809, 0.9214, 0.26796, 0.725783, 0.736382, 0.718257, 0.748746,
0.696065, 0.782767, 0.629159, 0.863277, 0.436711, 0.910179, 0.302485,
0.780655, 0.63356, 0.858998, 0.448145, 0.915051, 0.287611, 0.758096,
0.67853, 0.80707, 0.576119, 0.903562, 0.32241, 0.808309, 0.573299,
0.905121, 0.317745, 0.802098, 0.587326, 0.896784, 0.34248, 0.833193,
0.514234, 0.92425, 0.259043, 0.710177, 0.761555, 0.67188, 0.815692,
0.556253, 0.913292, 0.293003, 0.766463, 0.662291, 0.827548, 0.528036,
0.922092, 0.265802, 0.722061, 0.74255, 0.707328, 0.765957, 0.663288,
0.826347, 0.530942, 0.921458, 0.267782, 0.725477, 0.736893, 0.717362,
0.750189, 0.6934, 0.786607, 0.621069, 0.870766, 0.41637, 0.899122,
0.335595, 0.824992, 0.534206, 0.920671, 0.270233, 0.729667, 0.729837,
0.729548, 0.730039, 0.729203, 0.730623, 0.728207, 0.732309, 0.72532,
0.737154, 0.716905, 0.750923}
I don't think there are any duplicates in this list ($r$ is in the chaotic region). For other values of $r$ there are indeed duplicates:
With[{r = 3.5},
NestList[r*#*(1 - #) &, 0.5, 1000][[-100 ;;]]] // DeleteDuplicates // Sort
{0.38282, 0.500884, 0.826941, 0.874997}
// Union
does the same thing as // DeleteDuplicates // Sort
if you prefer.
$endgroup$
add a comment |
$begingroup$
For a specific value of $r$ you can do
With[{r = 3.7},
NestList[r*#*(1-#) &, 0.5, 1000][[-100 ;;]]]
{0.783499, 0.627626, 0.864733, 0.432788, 0.908285, 0.308222,
0.788918, 0.616148, 0.875086, 0.404449, 0.891219, 0.358706, 0.851134,
0.468809, 0.9214, 0.26796, 0.725783, 0.736382, 0.718257, 0.748746,
0.696065, 0.782767, 0.629159, 0.863277, 0.436711, 0.910179, 0.302485,
0.780655, 0.63356, 0.858998, 0.448145, 0.915051, 0.287611, 0.758096,
0.67853, 0.80707, 0.576119, 0.903562, 0.32241, 0.808309, 0.573299,
0.905121, 0.317745, 0.802098, 0.587326, 0.896784, 0.34248, 0.833193,
0.514234, 0.92425, 0.259043, 0.710177, 0.761555, 0.67188, 0.815692,
0.556253, 0.913292, 0.293003, 0.766463, 0.662291, 0.827548, 0.528036,
0.922092, 0.265802, 0.722061, 0.74255, 0.707328, 0.765957, 0.663288,
0.826347, 0.530942, 0.921458, 0.267782, 0.725477, 0.736893, 0.717362,
0.750189, 0.6934, 0.786607, 0.621069, 0.870766, 0.41637, 0.899122,
0.335595, 0.824992, 0.534206, 0.920671, 0.270233, 0.729667, 0.729837,
0.729548, 0.730039, 0.729203, 0.730623, 0.728207, 0.732309, 0.72532,
0.737154, 0.716905, 0.750923}
I don't think there are any duplicates in this list ($r$ is in the chaotic region). For other values of $r$ there are indeed duplicates:
With[{r = 3.5},
NestList[r*#*(1 - #) &, 0.5, 1000][[-100 ;;]]] // DeleteDuplicates // Sort
{0.38282, 0.500884, 0.826941, 0.874997}
// Union
does the same thing as // DeleteDuplicates // Sort
if you prefer.
$endgroup$
For a specific value of $r$ you can do
With[{r = 3.7},
NestList[r*#*(1-#) &, 0.5, 1000][[-100 ;;]]]
{0.783499, 0.627626, 0.864733, 0.432788, 0.908285, 0.308222,
0.788918, 0.616148, 0.875086, 0.404449, 0.891219, 0.358706, 0.851134,
0.468809, 0.9214, 0.26796, 0.725783, 0.736382, 0.718257, 0.748746,
0.696065, 0.782767, 0.629159, 0.863277, 0.436711, 0.910179, 0.302485,
0.780655, 0.63356, 0.858998, 0.448145, 0.915051, 0.287611, 0.758096,
0.67853, 0.80707, 0.576119, 0.903562, 0.32241, 0.808309, 0.573299,
0.905121, 0.317745, 0.802098, 0.587326, 0.896784, 0.34248, 0.833193,
0.514234, 0.92425, 0.259043, 0.710177, 0.761555, 0.67188, 0.815692,
0.556253, 0.913292, 0.293003, 0.766463, 0.662291, 0.827548, 0.528036,
0.922092, 0.265802, 0.722061, 0.74255, 0.707328, 0.765957, 0.663288,
0.826347, 0.530942, 0.921458, 0.267782, 0.725477, 0.736893, 0.717362,
0.750189, 0.6934, 0.786607, 0.621069, 0.870766, 0.41637, 0.899122,
0.335595, 0.824992, 0.534206, 0.920671, 0.270233, 0.729667, 0.729837,
0.729548, 0.730039, 0.729203, 0.730623, 0.728207, 0.732309, 0.72532,
0.737154, 0.716905, 0.750923}
I don't think there are any duplicates in this list ($r$ is in the chaotic region). For other values of $r$ there are indeed duplicates:
With[{r = 3.5},
NestList[r*#*(1 - #) &, 0.5, 1000][[-100 ;;]]] // DeleteDuplicates // Sort
{0.38282, 0.500884, 0.826941, 0.874997}
// Union
does the same thing as // DeleteDuplicates // Sort
if you prefer.
edited yesterday
answered yesterday
RomanRoman
4,89011130
4,89011130
add a comment |
add a comment |
JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.
JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.
JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.
JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194802%2fcorrectly-defining-the-return-of-a-procedure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Curly braces are for lists, not for code blocks. Use
Module
,Block
, orWith
for code blocks. And try not to useFor
.$endgroup$
– Roman
yesterday
3
$begingroup$
Why should I avoid the For loop in Mathematica?
$endgroup$
– corey979
yesterday
1
$begingroup$
Return
doesn't do what you think it does. Don't use it until you understand it. Once you understand it, you'll probably never use it.$endgroup$
– John Doty
yesterday
$begingroup$
You might also look into
Nest
andNestList
as an alternative, built-in way to iterate this map.$endgroup$
– Chris K
yesterday