Approximating integral with small parameter












2












$begingroup$


I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried



Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]


My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.



On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:



$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$



Now Mathematica can compute this integral easily



Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]


giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$



I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}], which could do this whole manipulation for me.










share|improve this question











$endgroup$












  • $begingroup$
    Please, always remember to give copyable code.
    $endgroup$
    – Henrik Schumacher
    2 hours ago






  • 1




    $begingroup$
    @HenrikSchumacher did that. Thanks for reminding!
    $endgroup$
    – Kolya Terziev
    2 hours ago
















2












$begingroup$


I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried



Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]


My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.



On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:



$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$



Now Mathematica can compute this integral easily



Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]


giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$



I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}], which could do this whole manipulation for me.










share|improve this question











$endgroup$












  • $begingroup$
    Please, always remember to give copyable code.
    $endgroup$
    – Henrik Schumacher
    2 hours ago






  • 1




    $begingroup$
    @HenrikSchumacher did that. Thanks for reminding!
    $endgroup$
    – Kolya Terziev
    2 hours ago














2












2








2





$begingroup$


I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried



Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]


My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.



On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:



$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$



Now Mathematica can compute this integral easily



Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]


giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$



I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}], which could do this whole manipulation for me.










share|improve this question











$endgroup$




I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried



Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]


My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.



On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:



$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$



Now Mathematica can compute this integral easily



Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]


giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$



I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}], which could do this whole manipulation for me.







calculus-and-analysis approximation






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago







Kolya Terziev

















asked 3 hours ago









Kolya TerzievKolya Terziev

728




728












  • $begingroup$
    Please, always remember to give copyable code.
    $endgroup$
    – Henrik Schumacher
    2 hours ago






  • 1




    $begingroup$
    @HenrikSchumacher did that. Thanks for reminding!
    $endgroup$
    – Kolya Terziev
    2 hours ago


















  • $begingroup$
    Please, always remember to give copyable code.
    $endgroup$
    – Henrik Schumacher
    2 hours ago






  • 1




    $begingroup$
    @HenrikSchumacher did that. Thanks for reminding!
    $endgroup$
    – Kolya Terziev
    2 hours ago
















$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago




$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago




1




1




$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago




$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

You could use AsymptoticIntegrate, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate to handle:



AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]



-1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2







share|improve this answer









$endgroup$













  • $begingroup$
    Sorry, but this is a surrogate, not the true answer.
    $endgroup$
    – user64494
    2 hours ago



















3












$begingroup$

The true answer in version 12 is as follows.



Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]



(1/(2 (-4 + [Mu])^(
3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
5 Sqrt[(4 - [Mu]) [Mu]^3] +
Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])




Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]



$$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$




Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:



Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1}, 
PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]



1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
1 + Sqrt[[Mu]/(-4 + [Mu])]] +
Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] -
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]])




Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]



$$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$







share|improve this answer











$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "387"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196985%2fapproximating-integral-with-small-parameter%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    You could use AsymptoticIntegrate, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate to handle:



    AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]



    -1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2







    share|improve this answer









    $endgroup$













    • $begingroup$
      Sorry, but this is a surrogate, not the true answer.
      $endgroup$
      – user64494
      2 hours ago
















    2












    $begingroup$

    You could use AsymptoticIntegrate, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate to handle:



    AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]



    -1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2







    share|improve this answer









    $endgroup$













    • $begingroup$
      Sorry, but this is a surrogate, not the true answer.
      $endgroup$
      – user64494
      2 hours ago














    2












    2








    2





    $begingroup$

    You could use AsymptoticIntegrate, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate to handle:



    AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]



    -1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2







    share|improve this answer









    $endgroup$



    You could use AsymptoticIntegrate, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate to handle:



    AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]



    -1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2








    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 3 hours ago









    Carl WollCarl Woll

    75.7k3100197




    75.7k3100197












    • $begingroup$
      Sorry, but this is a surrogate, not the true answer.
      $endgroup$
      – user64494
      2 hours ago


















    • $begingroup$
      Sorry, but this is a surrogate, not the true answer.
      $endgroup$
      – user64494
      2 hours ago
















    $begingroup$
    Sorry, but this is a surrogate, not the true answer.
    $endgroup$
    – user64494
    2 hours ago




    $begingroup$
    Sorry, but this is a surrogate, not the true answer.
    $endgroup$
    – user64494
    2 hours ago











    3












    $begingroup$

    The true answer in version 12 is as follows.



    Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]



    (1/(2 (-4 + [Mu])^(
    3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
    7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
    I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
    5 Sqrt[(4 - [Mu]) [Mu]^3] +
    Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
    7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
    12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
    7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
    1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
    4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
    1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
    4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
    1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
    4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
    Sqrt[-(-4 + [Mu]) [Mu]]] -
    11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
    Sqrt[-(-4 + [Mu]) [Mu]]] +
    7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
    Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
    2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
    Sqrt[-(-4 + [Mu]) [Mu]]] +
    4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
    Sqrt[-(-4 + [Mu]) [Mu]]] +
    11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
    Sqrt[-(-4 + [Mu]) [Mu]]] -
    7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
    Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
    Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])




    Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]



    $$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$




    Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:



    Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1}, 
    PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]



    1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
    Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
    1 + Sqrt[[Mu]/(-4 + [Mu])]] +
    Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
    3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
    Log[1 + [Mu]/
    Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
    Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
    Sqrt[[Mu]/(-4 + [Mu])]
    Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
    Sqrt[(-4 + [Mu]) [Mu]]] -
    3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
    Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
    Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
    Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
    Sqrt[(-4 + [Mu]) [Mu]]] +
    Sqrt[[Mu]/(-4 + [Mu])]
    Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
    Sqrt[(-4 + [Mu]) [Mu]]] +
    3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
    Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
    Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
    Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
    Sqrt[(-4 + [Mu]) [Mu]]])




    Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]



    $$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$







    share|improve this answer











    $endgroup$


















      3












      $begingroup$

      The true answer in version 12 is as follows.



      Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]



      (1/(2 (-4 + [Mu])^(
      3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
      7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
      I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
      5 Sqrt[(4 - [Mu]) [Mu]^3] +
      Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
      7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
      12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
      7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
      1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
      4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
      1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
      4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
      1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
      4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
      Sqrt[-(-4 + [Mu]) [Mu]]] -
      11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
      Sqrt[-(-4 + [Mu]) [Mu]]] +
      7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
      Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
      2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
      Sqrt[-(-4 + [Mu]) [Mu]]] +
      4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
      Sqrt[-(-4 + [Mu]) [Mu]]] +
      11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
      Sqrt[-(-4 + [Mu]) [Mu]]] -
      7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
      Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
      Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])




      Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]



      $$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$




      Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:



      Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1}, 
      PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]



      1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
      Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
      1 + Sqrt[[Mu]/(-4 + [Mu])]] +
      Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
      3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
      Log[1 + [Mu]/
      Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
      Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
      Sqrt[[Mu]/(-4 + [Mu])]
      Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
      Sqrt[(-4 + [Mu]) [Mu]]] -
      3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
      Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
      Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
      Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
      Sqrt[(-4 + [Mu]) [Mu]]] +
      Sqrt[[Mu]/(-4 + [Mu])]
      Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
      Sqrt[(-4 + [Mu]) [Mu]]] +
      3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
      Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
      Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
      Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
      Sqrt[(-4 + [Mu]) [Mu]]])




      Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]



      $$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$







      share|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        The true answer in version 12 is as follows.



        Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]



        (1/(2 (-4 + [Mu])^(
        3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
        7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
        I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
        5 Sqrt[(4 - [Mu]) [Mu]^3] +
        Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
        7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
        12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
        7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
        1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
        4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
        1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
        4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
        1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
        4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] -
        11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] +
        7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
        2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] +
        4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] +
        11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] -
        7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
        Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])




        Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]



        $$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$




        Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:



        Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1}, 
        PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]



        1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
        Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
        1 + Sqrt[[Mu]/(-4 + [Mu])]] +
        Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
        3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
        Log[1 + [Mu]/
        Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
        Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
        Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] -
        3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] +
        Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] +
        3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]])




        Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]



        $$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$







        share|improve this answer











        $endgroup$



        The true answer in version 12 is as follows.



        Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]



        (1/(2 (-4 + [Mu])^(
        3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
        7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
        I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
        5 Sqrt[(4 - [Mu]) [Mu]^3] +
        Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
        7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
        12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
        7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
        1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
        4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
        1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
        4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
        1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
        4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] -
        11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] +
        7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
        2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] +
        4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] +
        11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] -
        7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
        Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
        Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])




        Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]



        $$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$




        Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:



        Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1}, 
        PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]



        1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
        Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
        1 + Sqrt[[Mu]/(-4 + [Mu])]] +
        Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
        3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
        Log[1 + [Mu]/
        Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
        Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
        Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] -
        3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] +
        Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] +
        3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
        Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
        Sqrt[(-4 + [Mu]) [Mu]]])




        Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]



        $$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$








        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 1 hour ago

























        answered 2 hours ago









        user64494user64494

        3,64311122




        3,64311122






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196985%2fapproximating-integral-with-small-parameter%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Knooppunt Holsloot

            Altaar (religie)

            Gregoriusmis