Approximating integral with small parameter
$begingroup$
I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried
Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]
My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.
On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:
$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$
Now Mathematica can compute this integral easily
Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]
giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$
I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}]
, which could do this whole manipulation for me.
calculus-and-analysis approximation
$endgroup$
add a comment |
$begingroup$
I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried
Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]
My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.
On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:
$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$
Now Mathematica can compute this integral easily
Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]
giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$
I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}]
, which could do this whole manipulation for me.
calculus-and-analysis approximation
$endgroup$
$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago
1
$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago
add a comment |
$begingroup$
I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried
Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]
My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.
On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:
$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$
Now Mathematica can compute this integral easily
Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]
giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$
I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}]
, which could do this whole manipulation for me.
calculus-and-analysis approximation
$endgroup$
I want to approximately compute integral $$I =int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2+mu x}$$ assuming that $mu$ is small. I tried
Integrate [(2 - x) (1 - x) x/((1 - x)^2 + A x), {x, 0, 1}]
My Mathematica for some reason fails to do this integral explicitly (which is strange, since it is an integral of a rational function; I guess Mathematica obtains divergent answer after decomposing the fraction, but can see that the integral is convergent in fact), so that I could just approximate the exact result.
On the other hand, the point of $mu x$ term is to "regulate" divergence of this integral (i.e. integral without it, $int_0^1 dx frac{x(2-x)(1-x)}{(1-x)^2}$, is logarithmically divergent on the upper limit). Therefore, the whole effect of this term can be accounted by shifting the upper limit:
$$I approx int_0^{1-mu} dx frac{x(2-x)(1-x)}{(1-x)^2}$$
Now Mathematica can compute this integral easily
Integrate [(2 - x) (1 - x) x/(1 - x)^2, {x, 0, 1 - A}, Assumptions -> A > 0]
giving $I = -frac{1}{2}(1+ln(mu^2)-mu^2)$, which can be approximated as $I approx -frac{1}{2}(1+ln(mu^2))$
I wonder if there is any function, smth like ApproximateIntegral[f[x,s],{x,a,b},{s,0}]
, which could do this whole manipulation for me.
calculus-and-analysis approximation
calculus-and-analysis approximation
edited 2 hours ago
Kolya Terziev
asked 3 hours ago
Kolya TerzievKolya Terziev
728
728
$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago
1
$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago
add a comment |
$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago
1
$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago
$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago
$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago
1
1
$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago
$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You could use AsymptoticIntegrate
, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate
to handle:
AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]
-1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2
$endgroup$
$begingroup$
Sorry, but this is a surrogate, not the true answer.
$endgroup$
– user64494
2 hours ago
add a comment |
$begingroup$
The true answer in version 12 is as follows.
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]
(1/(2 (-4 + [Mu])^(
3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
5 Sqrt[(4 - [Mu]) [Mu]^3] +
Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]
$$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$
Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1},
PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]
1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
1 + Sqrt[[Mu]/(-4 + [Mu])]] +
Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] -
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]
$$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196985%2fapproximating-integral-with-small-parameter%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You could use AsymptoticIntegrate
, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate
to handle:
AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]
-1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2
$endgroup$
$begingroup$
Sorry, but this is a surrogate, not the true answer.
$endgroup$
– user64494
2 hours ago
add a comment |
$begingroup$
You could use AsymptoticIntegrate
, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate
to handle:
AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]
-1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2
$endgroup$
$begingroup$
Sorry, but this is a surrogate, not the true answer.
$endgroup$
– user64494
2 hours ago
add a comment |
$begingroup$
You could use AsymptoticIntegrate
, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate
to handle:
AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]
-1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2
$endgroup$
You could use AsymptoticIntegrate
, although I change the $mu x$ term to just $mu$, as the latter version is easier for AsymptoticIntegrate
to handle:
AsymptoticIntegrate[(x(2-x)(1-x))/((1-x)^2+μ), {x,0,1}, {μ,0,2}]
-1/2 + μ^2/4 + μ (1/2 - Log[μ]/2) - Log[μ]/2
answered 3 hours ago
Carl WollCarl Woll
75.7k3100197
75.7k3100197
$begingroup$
Sorry, but this is a surrogate, not the true answer.
$endgroup$
– user64494
2 hours ago
add a comment |
$begingroup$
Sorry, but this is a surrogate, not the true answer.
$endgroup$
– user64494
2 hours ago
$begingroup$
Sorry, but this is a surrogate, not the true answer.
$endgroup$
– user64494
2 hours ago
$begingroup$
Sorry, but this is a surrogate, not the true answer.
$endgroup$
– user64494
2 hours ago
add a comment |
$begingroup$
The true answer in version 12 is as follows.
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]
(1/(2 (-4 + [Mu])^(
3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
5 Sqrt[(4 - [Mu]) [Mu]^3] +
Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]
$$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$
Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1},
PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]
1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
1 + Sqrt[[Mu]/(-4 + [Mu])]] +
Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] -
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]
$$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$
$endgroup$
add a comment |
$begingroup$
The true answer in version 12 is as follows.
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]
(1/(2 (-4 + [Mu])^(
3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
5 Sqrt[(4 - [Mu]) [Mu]^3] +
Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]
$$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$
Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1},
PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]
1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
1 + Sqrt[[Mu]/(-4 + [Mu])]] +
Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] -
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]
$$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$
$endgroup$
add a comment |
$begingroup$
The true answer in version 12 is as follows.
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]
(1/(2 (-4 + [Mu])^(
3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
5 Sqrt[(4 - [Mu]) [Mu]^3] +
Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]
$$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$
Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1},
PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]
1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
1 + Sqrt[[Mu]/(-4 + [Mu])]] +
Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] -
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]
$$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$
$endgroup$
The true answer in version 12 is as follows.
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 +[Mu]*x),{x, 0, 1},Assumptions-> [Mu] > 0 && [Mu] < 1]
(1/(2 (-4 + [Mu])^(
3/2)))Sqrt[[Mu]] (4 I Sqrt[-1 + 4/[Mu]] +
7 I Sqrt[(4 - [Mu]) [Mu]] - 2 I Sqrt[(4 - [Mu]) [Mu]^3] +
I (4 Sqrt[-1 + 4/[Mu]] + 3 Sqrt[(4 - [Mu]) [Mu]] -
5 Sqrt[(4 - [Mu]) [Mu]^3] +
Sqrt[-(-4 + [Mu]) [Mu]^5]) Log[[Mu]] + [Mu] (12 -
7 [Mu] + [Mu]^2) Log[1 - I Sqrt[-([Mu]/(-4 + [Mu]))]] -
12 [Mu] Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
7 [Mu]^2 Log[1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] - [Mu]^3 Log[
1 + I Sqrt[-([Mu]/(-4 + [Mu]))]] +
4 Log[1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu] Log[
1 - (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu] Log[
1 + (I [Mu])/Sqrt[-(-4 + [Mu]) [Mu]]] -
4 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
11 [Mu] Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
7 [Mu]^2 Log[(2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] - [Mu]^3 Log[(
2 I - I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
4 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] +
11 [Mu] Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] -
7 [Mu]^2 Log[(-2 I + I [Mu] + Sqrt[-(-4 + [Mu]) [Mu]])/
Sqrt[-(-4 + [Mu]) [Mu]]] + [Mu]^3 Log[(-2 I + I [Mu] +
Sqrt[-(-4 + [Mu]) [Mu]])/Sqrt[-(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] > 0 && [Mu] < 1]
$$ frac{1}{2} (-log (mu )-1)+frac{pi sqrt{mu }}{4}+frac{1}{4} mu (-2 log (mu )-5)+frac{25}{32} pi mu ^{3/2}+frac{1}{24} mu ^2 (12 log (mu )-19)+Oleft(mu ^{5/2}right)$$
Addition. In order to complete the answer, let us consider the asymptotics for negative values of $mu$:
Integrate[(x*(2 - x)*(1 - x))/((1 - x)^2 + [Mu]*x), {x, 0, 1},
PrincipalValue -> True, Assumptions -> [Mu] < 0 && [Mu] > -1]
1/2 (-1 - 2 [Mu] + (-1 - [Mu] + [Mu]^2) Log[-[Mu]] +
Sqrt[[Mu]/(-4 + [Mu])] (-1 - 3 [Mu] + [Mu]^2) Log[
1 + Sqrt[[Mu]/(-4 + [Mu])]] +
Sqrt[[Mu]/(-4 + [Mu])] Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[1 + [Mu]/Sqrt[(-4 + [Mu]) [Mu]]] -
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] -
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] + [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] - Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] +
3 [Mu] Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]] - [Mu]^2 Sqrt[[Mu]/(-4 + [Mu])]
Log[(2 - [Mu] + Sqrt[(-4 + [Mu]) [Mu]])/
Sqrt[(-4 + [Mu]) [Mu]]])
Series[%, {[Mu], 0, 2}, Assumptions -> [Mu] < 0 && [Mu] > -1]
$$frac{1}{2} (-log (-mu )-1)+frac{1}{4} mu (-2 log (-mu )-5)+frac{1}{24} mu ^2 (12 log (-mu )-19)+Oleft(mu ^{5/2}right) $$
edited 1 hour ago
answered 2 hours ago
user64494user64494
3,64311122
3,64311122
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196985%2fapproximating-integral-with-small-parameter%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please, always remember to give copyable code.
$endgroup$
– Henrik Schumacher
2 hours ago
1
$begingroup$
@HenrikSchumacher did that. Thanks for reminding!
$endgroup$
– Kolya Terziev
2 hours ago